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Abstract
We present results for the local density of states in the superconducting (S) and
normal metallic (N) layers of an SN multilayer, and the supercurrent, based on a
Green function formalism, as an extension of previous calculations on NS, SNS
and SNSNS systems. The gap function is determined self-consistently. Our
systems are chosen to have a finite transverse width. We focus on phenomena
which occur at so-called critical transverse widths, at which a new transverse
mode is starting to contribute. It appears that for an arbitrary width the Andreev
approximation (AA), which takes into account only Andreev reflection at the
SN interfaces, works well. We show that at a critical width the AA breaks down.
An exact treatment is required, which also considers ordinary reflections. In
addition, we study the influence of an interface barrier on the coupling between
the S layers.

1. Introduction

Starting about two decades ago, the interest of developing devices at a very small scale gave
rise to a new branch in physics, mesoscopic physics. Both theoretically and experimentally,
many interesting phenomena were discovered that occur at this scale which lies essentially in
the submicron ranges.

Many samples are built up of superconducting (S) and normal metallic (N) components
in which necessarily SN interfaces and possibly point contacts occur. This is why a lot of
theoretical work was devoted to studying different SN configurations.

The first experimental investigations, using tunnelling spectroscopy measurements,
revealed the fact that the density of states in a normal metal connected to a superconductor
is modified [1]. McMillan provided a simple tunnelling model for the proximity effect at
SN interfaces, which allows for a solution of the Gor’kov equations. Ishii [2] and Furusaki
et al [3, 4] extended his work to include Andreev reflections.
1 Author to whom any correspondence should be addressed.
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Figure 1. Illustration of an SN multilayer with finite transverse widths.

Recently [5], a powerful Green function formalism was published which unified earlier
formulations [1–4] and improved upon them. First applications were made for NS, SNS, and
SNSNS systems [5–7]. An important feature of these calculations was that the systems were
chosen to have a finite transverse width and they were focused on particular phenomena which
occur at specially chosen transverse widths. Up to now treatments have only been known for
an infinite width [8–10], or if a finite width was considered it was done in a global way, in
terms of the number of allowed transverse modes [4, 11, 12].

The aim of the present paper is to show applications to different SN multilayer structures,
by which we understand a periodic sequence of S and N layers, extended in the x-direction,
see figure 1. A set of observables is calculated, such as the local density of states (LDOS) in
the S and N layers of a multilayer, and the supercurrent in the multilayer.

In section 2, we present the theory, applied to SN multilayers. In many situations, it is
enough to work within the Andreev approximation (AA), which reduces to taking into account
only Andreev reflections at the S/N interfaces. In section 3 we will show results derived within
the AA. Exact calculations, which include ordinary reflections, are discussed in section 4, in
relation with the so-called critical transverse widths, at which a new transverse mode is starting
to contribute. In section 5 we present results for the supercurrent in the SN multilayers. In
section 6 we study the consequences of using a self-consistently calculated gap. Finally, to
complete the picture, in section 7 we take into consideration an interface potential, by this
modelling a Schottky barrier. We apply a simple δ-function barrier located at the SN interface,
introduced by Blonder et al [13].

2. Clean SN structures

The purpose of this section is to summarize first the basic ingredients of the general theory
presented in [5] which we need in calculating the LDOS ρ(x, E) for energies E of the order
of magnitude of the gap energy and the supercurrent I . After that we show how the general
theory is elaborated for applications to SN multilayers.

We study a periodic SN multilayer,which extends in the x-direction,as depicted in figure 1.
In the transverse directions y and z, the system has finite size, L y = Lz = Lt . We apply a
Kronig–Penney superlattice model, depicted in figure 2, which means that the pair potential is

�(x + dS + dN ) = �(x)eiφ

�(x) =
{

� if x ∈ S layer

0 if x ∈ N layer,

(1)

where dS and dN are the thicknesses of the S and N layers respectively, and φ is the phase
difference between two neighbouring S layers.
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Figure 2. The Kronig–Penney model for the pair potential, used in [8].

Both quantities we want to calculate can be expressed in terms of the Green function in
the following way:

ρ(x, E) = − 2

π

1

L y Lz
lim
δ→0

∑
ky ,kz

Im G11(x, x; ky, kz, E + iδ). (2)

I = −2ie
1

L y Lz

∑
ky ,kz

lim
x′→x

(
∂

∂x ′ − ∂

∂x

)
kT

∑
n

G11(x, x ′; ky, kz, iωn) (3)

where the Green function G11 is the upper left element of the matrix Green function.
The Green function can be expressed in terms of a kind of wavefunction, which is the

solution of the one-dimensional differential equation(
iωn + d2

dx2 + k2
F x −�

−�∗ iωn − d2

dx2 − k2
F x

)
�(x) = 0 (4)

where k2
F x ≡ µ − k2

y − k2
z . Note that the Bogoliubov equations arise from equation (4) by

substituting iωn → E . The solution of equation (4) for the spatially dependent � of the
multilayer (1) is built up by starting with the solution for a homogeneous superconductor,
having a constant �S . The wavefunction can then be written as

�σν
S (x) =

(
uσ

S eiφS/2

u−σ
S e−iφS/2

)
eiσνkσ

S x, (5)

with uσ
S = √

iωn + iσ�S , i�S =
√

(iωn + 0+)2 − �2
S and the Matsubara frequencies ωn =

nπkB T , n taking odd integer values only. The four standard solutions are labelled with the
sign indices σ and ν, that can both equal ±1. The index σ refers to the type of the propagating
particle (electron-like for σ = + and holelike for σ = −) and the index ν indicates the direction
of propagation.

In order to express the Green function in terms of �σν
S (x), a conjugate wavefunction is

needed, namely,

�̃σν
S (x) = ( uσ

S e−iφS/2 u−σ
S eiφS/2 ) eiσνkσ

S x (6)

(which is not the Hermitian conjugate), in which ν has now to be interpreted as minus the
direction of propagation.

With the use of these wavefunctions, we can express the Green function for a homogeneous
superconductor as

GS(x, x ′) =
∑

σ

dσ
S �

σµ

S (x)�̃
σ,−µ

S (x ′), (7)

with µ = sgn(x − x ′) and dσ
S = − 1

4�S kσ
S

.
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2.1. A single interface and more interfaces

For a single interface, situated at the position x j , the general form of the Green function is

Gν jν′ j (x, x ′) = Gν j (x, x ′)δνν′ +
∑
σσ ′

dσ
ν j d

σ ′
ν′ j�

σν
ν j (x)tσσ ′νν′

ν jν′ j �̃σ ′ν′
ν′ j (x ′), (8)

where the subscript (ν j) refers to the part of the system that is on the ν side of the interface
at position x j . The first term accounts for the possible ways of propagating from x ′ to x
without being scattered at the interface, while the second term describes the propagation via
the interface.

The scattering matrix tσσ ′νν′
ν jν′ j ′ is found by applying boundary conditions at x = x j . We

require the continuity of the Green function and its derivative. Thus, the equation obeyed by
the t-matrix is ∑

σν

νdσ
ν j�

σν
ν j (x j)t

σσ ′νν′
ν jν′ j = −ν ′�σ ′,−ν′

ν′ j (x j). (9)

If we consider a system with an arbitrary number of interfaces, with position coordinates
x j < x j+1, then the scattering of the quasiparticles is described by the scattering matrices

T σσ ′µµ′
ν jν′ j ′ . The general form of the Green function is

Gν jν′ j ′(x, x ′) = Gν j (x, x ′)[δνν′δ j j ′ + δ−νν′ δ j+ν, j ′] +
∑
σσ ′

∑
µµ′

dσ
ν j d

σ ′
ν′ j ′�

σµ

ν j (x)T σσ ′µµ′
ν jν′ j ′ �̃

σ ′µ′
ν′ j ′ (x ′).

(10)

Again, imposing the boundary conditions, we obtain a Lippmann–Schwinger equation
which allows us to calculate the T -matrices by means of the single-interface t-matrices

T σσ ′νµ′
ν jν′ j ′ = tσσ ′νµ′

ν jµ′ j [δµ′ν′δ j j ′ + δ−µ′ν′δ j+µ′, j ′] +
∑
σ ′′ν′′

tσσ ′′νν′′
ν jν′′ j dσ ′′

ν′′ j T
σ ′′σ ′,−ν′′µ′
ν′′ jν′ j ′ . (11)

This equation expresses the idea of multiple scattering, since the matrix T σσ ′νµ′
ν jν′ j ′ contains

all possible processes that yield the correct final state. The first term in equation (11) accounts
for the possibility that the particle is scattered once. The second term collects the processes in
which the particle is scattered once due to tσσ ′′νν′′

ν jν′′ j and an arbitrary number of other times due

to T σ ′′σ ′,−ν′′µ′
ν′′ jν′ j ′ .

2.2. Periodic SN multilayers

So far we have just summarized the description given previously [5]. We will now focus on
an infinite periodic SN multilayer to which the theory has not been applied yet. For an infinite
multilayer, it is always possible to refer to any layer of the system by referring to an even-
numbered (or an odd-numbered) interface only. This can lead to a further simplification of the
Lippmann–Schwinger equation. We choose to refer to any part of the system by referring to
the even interfaces. However, for the t-matrices, both even and odd interface indices need to
be used.

In order to rewrite equation (11) for the present purpose, we define the following matrices:

T j j ′ ≡ D jδ j j ′ +

(
T σσ ′,−µµ′

µjµ′ j ′ T σσ ′,−µµ′
µj,−µ′ j ′

T σσ ′,−µµ′
−µjµ′ j ′ T σσ ′,−µµ′

−µj,−µ′ j ′

)
(12)

D j ≡
( δσσ ′ δµµ′

dσ
µj

0

0
δσσ ′ δµµ′

dσ
−µj

)
(13)
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Figure 3. Schematic representation of the processes accounted for by the matrices A j , B j and
C j .

A j ≡
(

0 tσσ ′,−µµ′
−µ, j+µ,µ′, j+µdσ ′

−µ′, j−2δµ−δµ′−
0 0

)
(14)

B j ≡
(

0 tσσ ′,−µµ′
−µ, j+µ,µ′, j+µdσ ′

−µ′ jδ−µµ′

tσσ ′,−µµ′
−µjµ′ j dσ ′

µ′ j 0

)
(15)

C j ≡
(

0 tσσ ′,−µµ′
−µ, j+µ,µ′, j+µdσ ′

−µ′, j+2δµ+δµ′+
0 0

)
. (16)

All elements of these 2 × 2 matrices can themselves be regarded as 4 × 4 matrices, with
the indices (σ, µ) and (σ ′, µ′) labelling the rows and the columns, respectively. That makes
T j j ′ an 8 × 8 matrix that satisfies

A j · T j−2, j ′ + (B j − 1) · T j j ′ + C j · T j+2, j ′ + D jδ j j ′ = 0. (17)

In terms of these matrices, the system Green function (10) has the following form:

Gν jν′ j ′(x, x ′) = Gν j (x, x ′)[δνν′δ j j ′ + δ−νν′ δ j+ν, j ′] +
∑
σσ ′

∑
µµ′

dσ
ν j d

σ ′
ν′ j ′�

σµ

ν j (x)

× (T j j ′ − D jδ j j ′)
σσ ′µµ′
ν jν′ j ′ (. . . A j , B j , C j , A j+1, B j+1, C j+1, . . .)�̃

σ ′µ′
ν′ j ′ (x ′). (18)

All possible scattering processes are incorporated in equation (17), which expresses the
content of the Lippmann–Schwinger equation. To illustrate the different processes accounted
for by the A j , B j and C j matrices, we show a schema in figure 3.

We now turn to the periodic system. For the moment, we assume that the phase of the pair
potential is the same and equal to zero in all the S layers. The periodicity allows us to simplify
the problem and to rewrite equation (17). First we perform the following transformations

t̂σσ ′νν′
ν jν′ j ≡ eiσνkσ

ν j x j tσσ ′νν′
ν jν′ j eiσ ′ν′kσ ′

ν′ j
x j , (19)

T̂ σσ ′νν′
µjµ′ j ′ ≡ eiσνkσ

µj x j T σσ ′νν′
µjµ′ j ′ eiσ ′ν′kσ ′

µ′ j ′ x
′
j . (20)

The scattering matrices with hats no longer depend on the interface positions x j , although they
still refer to the interface number, through the labels ν j .

The matrices T j j ′, D j , A j , B j and C j become

T̂ j j ′ ≡ D̂ jδ j j ′ +

(
T̂ σσ ′,−µµ′

µjµ′ j ′ T̂ σσ ′,−µµ′
µj,−µ′ j ′

T̂ σσ ′,−µµ′
−µjµ′ j ′ T̂ σσ ′,−µµ′

−µj,−µ′ j ′

)
(21)
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D̂ ≡
( δσσ ′ δµµ′

dσ
µ

e−iσ kσ
µaµ 0

0
δσσ ′ δµµ′

dσ−µ
e−iσ kσ−µa−µ

)
(22)

Â ≡
(

0 t̂σσ ′,−µµ′
µ,−µ′ dσ ′

−µ′δµ−δµ′−eiσ ′kσ ′
−µ′ a−µ′

0 0

)
(23)

B̂ ≡
(

0 t̂σσ ′,−µµ′
µ,−µ′ dσ ′

−µ′δ−µµ′eiσ ′kσ ′
−µ′ a−µ′

t̂σσ ′,−µµ′
−µµ′ dσ ′

µ′ e
iσ ′kσ ′

µ′ aµ′ 0

)
(24)

Ĉ ≡
(

0 t̂σσ ′,−µµ′
µ,−µ′ dσ ′

−µ′δµ+δµ′+eiσ ′kσ ′
−µ′ a−µ′

0 0

)
. (25)

After these transformations, and as a consequence of the periodicity, the Green function
becomes dependent on the relative coordinates only, and the j -independent layer thicknesses
aµ = µ(x j+µ − x j) and a−µ = µ(x j − x j−µ) can be defined. In terms of these matrices,
equation (17) now reads as

Â · T̂ j−2, j ′ + (B̂ − 1) · T̂ j j ′ + Ĉ · T̂ j+2, j ′ + D̂δ j j ′ = 0. (26)

This is a kind of discretized version of the original Green function equation. The general
solution is

T̂ j j ′ = X̂
| j− j ′|/2
sgn( j− j ′) · T̂0, (27)

where X̂−, X̂+ and T̂0 are implicitly given by the following set of equations:

Â · X̂2
− + (B̂ − 1) · X̂− + Ĉ = 0 (28)

Â + (B̂ − 1) · X̂+ + Ĉ · X̂2
+ = 0 (29)

[A · X̂− + (B̂ − 1) + Ĉ · X̂+] · T̂0 + D̂ = 0. (30)

Note that (28) and (29) are quadratic equations. By that, for a periodic system, we can rewrite
the expression of the Green function (18) in a simpler form

Gν jν′ j ′(x, x ′) = Gν j (x, x ′)[δνν′δ j j ′ + δ−νν′ δ j+ν, j ′] +
∑
σσ ′

∑
µµ′

dσ
ν j d

σ ′
ν′ j ′�

σµ

ν j (x − x j)

× (T̂ j j ′ − D̂ jδ j j ′)
σσ ′µµ′
ν jν′ j ′ (Â, B̂, Ĉ)�̃

σ ′µ′
ν′ j ′ (x ′ − x j ′). (31)

The problem of calculating the LDOS or the supercurrent reduces to solving the system of
quadratic matrix equations (28)–(30).

After some manipulations, one can manage to reduce the problem to solving a 2×2 matrix
equation, which is equivalent to solving a system of eight simultaneous equations with real
coefficients. In the appendix, we show this more explicitly.

The formalism described up to now can be extended to the situation in which the pair
potentials have phase differences, that allow for currents in the multilayer to flow.

By convention, we assume that the N layer also has a phase equal to the phase of one of
the two adjacent S layers. This means that the phase over a bilayer is constant and it makes a
jump of φ at the edges between two bilayers.

Suppose the interface between two bilayers is chosen at odd j , then for even j the t-
matrices obey the equation∑

σν

νdσ
ν j u

σν
ν j t̂σσ ′νν′

ν jν′ j = −ν ′uσ ′,−ν′
ν′ j ( j even) (32)

while for odd interfaces a φ dependence remains and we are left with∑
σν

νdσ
ν jU(νφδ−νν′ )uσν

ν j t̂σσ ′νν′
ν jν′ j = −ν ′uσ ′,−ν′

ν′ j ( j odd), (33)
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where

U(φ) ≡



eiφ/2 0 0 0
0 e−iφ/2 0 0
0 0 eiφ/2 0
0 0 0 e−iφ/2


 . (34)

3. Local density of states in SN multilayers

First we apply the theory in calculating the LDOS in the middle of one of the S or N layers. For
most of the systems which will be described, the transverse width Lt is fixed to 13 bohr, the
chemical potential µ = 0.5 Ryd and the LDOS is normalized to the spatially constant LDOS
of the bulk N material. The coupling potential V is calculated using the BCS formula

Tc = 1.13ωDe−1/N(µ)V , (35)

where N(µ) = √
µ/4π . For Al with Tc = 1.2 K, µ = 0.5 Ryd and ωD = 375 K, we find

V = 9.516 Ryd. For the pair potential � we choose a value of 0.0001 Ryd. Given the BCS
relation �/kB Tc = 1.77, the pair function should be somewhat larger, � = 0.000 18 Ryd.
However, we should also keep in mind the reduction of the pair function due to the finite size
of the system. We will discuss this in section 6, in which we will determine the gap function
self-consistently. Furthermore, many of the results we will show are not very sensitive to the
precise choice for �.

It appears that the LDOS curves for SN multilayers look rather complicated. As a
preparation to understand them, we first look at simpler systems and we postpone the treatment
of SN multilayers to sections 3.2 and 3.3. In the coming subsection, we will follow the
development of the LDOS for a bulk system to the LDOS for systems with a few interfaces.

3.1. From bulk superconductor to SNS system

In this subsection we will first follow the development of the LDOS for a bulk bar-shaped
superconductor to the LDOS of an SN multilayer with dS � (ξ, dN ) and of multilayers with
dS � ξ , in which dN becomes comparable to dS. For the present clean systems the BCS
coherence length ξ ≈ 4000 bohr. Looking at figure 2 it is clear that a multilayer with thick S
layers, such that dS � ξ , comes close to an SNS system, particularly for E < �.

In figure 4 we show the LDOS inside the S layer of an SN multilayer and the DOS of bulk
S material. One clearly sees the singularity in the LDOS at E = �. The non-zero DOS of
the S material for E < � is due to the small imaginary part iδ added to the energy, E + iδ. In
all calculations we used δ ≈ 0.02�. Here dN = 1000 bohr and dS = 50 000 bohr, so that the
presence of the N layer is just a small perturbation from a bar-shaped superconductor.

First we concentrate on the development of the LDOS for E < �. In figure 5 we show
for the same system both the LDOS inside the S and the N layers. Due to the very small N
layer thickness, there is just one Andreev bound state in the N layer LDOS close to the gap
value of the energy, which is broadened by δ to a peak.

Figures 6–8 show what happens to the LDOS of the SN multilayers if we increase dN to
dN = 2000, 4000 and 10 000 bohr respectively. The pictures look more and more complex
as we increase dN . In the N layer LDOS we notice the appearance of more Andreev bound
states at lower and lower energies. The singularity in the S layer DOS lowers, certainly due to
reduced interaction of the neighbouring S layers.

The oscillations in the LDOS in all figures for E > � are a periodic-multilayer effect.
Before discussing this band structure effect, we will first consider multilayer systems with
decreasing dS, thus making more explicit the multilayer character of the system.
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Figure 4. LDOS for an SN multilayer (dS = 50 000 bohr and dN = 1000 bohr) and for a bar-shaped
superconductor (dashed curve).
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Figure 5. LDOS for an SN multilayer (dS = 50 000 bohr and dN = 1000 bohr) in the N layer
(solid curve) and S layer (dashed curve).

3.2. From SNS system to SN multilayer

Let us pick up the N layer LDOS from figure 8 and put it together with the LDOS of an SNS
system, whose dN = 10 000 bohr. This is what we show in figure 9. The good similarity is
due to the large dS. This SN multilayer is just a perturbation of an SNS system, as we can
notice from the small oscillations at energies E which are larger than the gap. Way below
E = � the Andreev bound states curves coincide. Just below E = � the clear peak in the
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Figure 6. LDOS for an SN multilayer (dS = 50 000 bohr and dN = 2000 bohr) in the N layer
(solid curve) and S layer (dashed curve).
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Figure 7. LDOS for an SN multilayer (dS = 50 000 bohr and dN = 4000 bohr) in the N layer
(solid curve) and S layer (dashed curve).

SNS system curve is smeared out in the multilayer curve, due to tunnelling interaction between
the N layers.

The similarity between SNS systems and SN multilayers reduces with decreasing dS.
Multilayer features start to appear gradually in the LDOS, as we can see in figures 10 and 11.

Due to the increased tunnelling, the discrete states start to form bands, while at E larger
than the gap, the oscillations are more pronounced and follow a periodicity, according to the
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Figure 8. LDOS for an SN multilayer (dS = 50 000 bohr and dN = 10 000 bohr) in the N layer
(solid curve) and S layer (dashed curve).

dispersion relations [8]

cos[(kx − kF x)(dS + dN )] = cosh

√
E2 + |�|2dS

2kF x
cosh

(
EdN

2kF x
+

iφ

2

)

+ sinh

√
E2 + |�|2dS

2kF x
sinh

(
EdN

2kF x
+

iφ

2

)

cos[(kx + kF x)(dS + dN )] = cosh

√
E2 + |�|2dS

2kF x
cosh

(
EdN

2kF x
− iφ

2

)

+ sinh

√
E2 + |�|2dS

2kF x
sinh

(
EdN

2kF x
− iφ

2

)
,

(36)

where kF x is given by

k2
F x = µ −

(
nyπ

Lt

)2

−
(

nzπ

Lt

)2

. (37)

In figure 12 we illustrate these dispersion relations for a multilayer with dS = dN =
10 000 bohr and two different choices for the phase difference, φ = 0 and π . To make
it clearer, we consider here only the (1, 2)-mode contribution to the LDOS. We notice the
change in the succession of gaps with the phase φ.

Using the definition of kF x , we notice that the number of allowed modes (ny, nz) is limited
by the condition k2

F x � 0. Besides, since kF x is different for each mode, the periodicity
with which there is a solution for kx in the equations (36) is also different. For a higher
mode (ny, nz), kF x is smaller and the frequency with which peaks and gaps in the LDOS
are alternating increases. We can see this in figure 13, where we compare the contributions
to the LDOS coming from different modes, at phase φ = 0. As in figure 12, the system
has dS = dN = 10 000 bohr. One can easily check that by just adding the four modes’
contributions one obtains the total LDOS shown in figure 14, which we are going to discuss
in the following subsection.
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Figure 9. LDOS for an SN multilayer (dS = 50 000 bohr and dN = 10 000 bohr) and for an SNS
system (dashed curve), calculated inside the N layer.
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Figure 10. LDOS for an SN multilayer (dS = 30 000 bohr and dN = 10 000 bohr) and for an SNS
system (dashed curve), calculated inside the N layer.

3.3. From infinite transverse size of an SN multilayer to a finite one

Now we are prepared to investigate real periodic-multilayer effects. In addition to the φ = 0
result shown in figure 14 we also show the φ = π result for the same system in figure 15.
The dispersion relations (36) are nicely illustrated in the succession of bands and gaps. This
system was also studied by Tanaka and Tsukada [8]. In their figure 2(a), they describe an SN
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Figure 11. LDOS for an SN multilayer (dS = 10 000 bohr and dN = 10 000 bohr) and for an SNS
system (dashed curve), calculated inside the N layer.
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Figure 12. Contributions to the LDOS of an SN multilayer (dS = dN = 10 000 bohr) in the middle
of the N layer from the mode (1, 2), for two choices of the phase of the pair potential, φ = 0 and π .

multilayer which has dN = dS = 5000 Å and φ = 0, and is infinite in the transverse direction.
For E < � the pictures look quite similar, but above the gap the LDOS in figures 14 and 15 is
much less smooth than in figure 2 of Tanaka and Tsukada. However, in figure 16 we show the
LDOS for a system with a larger transverse width (Lt = 130 bohr), and indeed, the behaviour
for E > � has become much smoother. So we conclude that differences between our results
and the results of Tanaka and Tsukada come from their use of an infinite transverse width.
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Figure 13. Contributions to the LDOS of an SN multilayer (dS = dN = 10 000 bohr) in the middle
of the N layer from the modes (1, 1), (1, 2), (2, 1) and (2, 2). The phase of the pair potential is
φ = 0.

0 1 2 3 4 5

E/∆ 

0

1

2

3

L
D

O
S 

(x
) 

SN multilayer, in the N layer 
SN multilayer, in the S layer 

d
S
=d

N
=10000 Bohr 

φ=0 

Figure 14. LDOS for an SN multilayer (dS = dN = 10 000 bohr) in the middle of the N layer
(solid curve) and S layer (dashed curve). The phase of the pair potential is φ = 0.

4. Exact calculations at critical widths

In many situations, the AA gives results with an error which is estimated to be less than 0.1%.
The systems which we discussed up to now satisfy the conditions for which the AA is very
good. In this section, we will deal with situations in which exact calculations are necessary.
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Figure 15. LDOS for an SN multilayer (dS = dN = 10 000 bohr) in the N layer (solid curve) and
S layer (dashed curve). The phase of the pair potential is φ = π .
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Figure 16. LDOS calculated in the N and S layers of an SN multilayer, at a higher transverse size,
Lt = 130 bohr.

In figure 17 we show the non-normalized LDOS at E = 5� of a homogeneous bar as a
function of the transverse width Lt . At E = 5�, the LDOS of multilayers with the same Lt

approaches a constant value, given by the homogeneous bar, as we can see in figures 4–16.
We notice in figure 17 that at certain values of Lt the LDOS has steps, followed by a fast and
smooth decrease. At these widths, where the condition k2

F x � 0 reaches the equality, an extra
mode is allowed in addition to the previous ones. The new mode has a large contribution to
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Figure 17. LDOS calculated in a bar-shaped S material, at E = 5�, at different transverse widths.

the LDOS, explaining the step. Apparently, at smaller Lt s the steps are higher, which means
that the effect of adding a new mode is larger. These values of Lt are called critical widths,
and we will denote them by Lcr

t .
Close to the critical widths, for 0 � k2

F x � �, the AA is no longer good. The highest
modes contribute most to the LDOS, as the steps in figure 17 suggest. Besides, since kF x is
very small in the dispersion relations (36), these modes will give rise to many more states than
the lower modes.

As an illustration, in figure 18 we show the absolute value of the LDOS for an SN
multilayer, whose dS = dN = 10 000 bohr (as we showed in figure 14), but this time at a
width Lt = 12.566 371 bohr. This value of the transverse width, corresponding to the equality
k2

F x = 0.3� for the highest, (2, 2) mode, lies very close to the critical width corresponding
to k2

F x = 0 and can be implemented without getting numerical problems. At this width, we
calculated the LDOS at two different positions x with respect to the SN interface, inside the N
layer. Although the solid and dashed curves have peaks at the same energies (the dispersion
relations do not change with x), their magnitude goes up or down, depending very much on
x . This is not the case within the AA, represented for comparison with a dotted curve, where
peaks of the same height are situated on the energy axis at equal distance from each other. This
difference between the exact and the approximate results can be explained if we make use of
the definition of the LDOS,

LDOS(r) =
∑

n

|�n(r)|2δ(E − En). (38)

In the AA the Andreev states with the electron moving to the right and to the left are uncoupled
and are degenerate. They can be represented by plane waves, having a r-independent absolute
value. In the exact treatment the corresponding travelling waves are coupled and they are split
into two standing waves, an odd (sinus) and even (cosinus) function. This leads to weighting
factors in the expression of the LDOS which are different and position dependent. So, the lifted
degeneracy in the exact calculation explains the position dependence of the LDOS illustrated
in figure 18.
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Figure 18. LDOS calculated in an SN multilayer, for a width Lt = 12.566 371 bohr close to a
critical width Lcr

t , at different positions x with respect to the S/N interface, inside the N layer.
dN = dS = 10 000 bohr. For comparison, AA is represented with dotted curve.

In order to compare multilayer results with published SNS results [5, 7], we calculated
the LDOS inside the N and S layers of a multilayer with dN = dS = 4000 bohr. This is shown
in figure 19 together with the SNS result. The corresponding results derived in the AA are
shown in figure 20. We restricted the calculations to the highest mode’s (2, 2) contribution to
the LDOS, at Lt = 12.5676 bohr. This transverse width corresponds to k2

F x = � for the mode
(2, 2). In both figures, at energies E < �, we do not notice any difference for the N layer.
The multilayer features appear only above the gap. Besides, inside the S layer there is no
contribution from the highest mode, as the corresponding states have such a small momentum
kx that, for E < �, they are localized inside the N layer.

The features shown in this section are directly related to a fine-tuning of the transverse
width. In this respect, these results are new compared to those reported by Tanaka and
Tsukada [8], who have considered an infinite transverse width only.

5. Calculation of the supercurrent

This section is devoted to the supercurrent in an SN multilayer. In 1962 Josephson predicted
that a supercurrent can be present in an SIS junction (Josephson junction) in the absence of an
external voltage (dc Josephson effect). This current appears provided there is a difference φ

in the phase of the pair potential between the two S layers of the Josephson junction.

I = Imax sin φ. (39)

Further, if an external potential is applied to the junction, then

dφ

dt
= 2eV/h̄. (40)

In other words, an external potential gives rise to an alternating supercurrent of frequency
f = 2eV/h (so-called ac Josephson effect). The quantum energy h f equals the energy of a
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Figure 19. LDOS calculated in both S and N layers of an SN multilayer, with dN = dS = 4000 bohr,
as well as in an SNS system, at a transverse width Lt = 12.5676 bohr.
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Figure 20. LDOS calculated in the AA in the N layer of an SN multilayer, with dN = dS =
4000 bohr, as well as in an SNS system, at a transverse width Lt = 12.5676 bohr.

Cooper pair transferred across the junction. It appears that the Josephson effect is also present
in SNS junctions. We will investigate it for SN multilayers.

Using equation (3), we calculated the supercurrent I through an SN multilayer with
dS = dN = 10 000 bohr as a function of the phase difference φ between two consecutive S
layers. Figure 21 gives the supercurrent normalized to the basic supercurrent unit I0 = e�/h̄
for different choices of the transverse width Lt of the multilayer. The φ dependence of I is
basically similar to a sin φ dependence, as for a Josephson junction, in that it is periodic in 2π .
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Figure 21. The dependence of the supercurrent I on the phase of the pair potential φ. dN = dS =
10 000 bohr and the normalization factor I0 = e�/h̄.

We notice that the supercurrent increases in magnitude with the transverse width, which
makes sense, given the fact that the larger the width Lt , the more modes contribute to the
current. However, a small deviation from this monotonic behaviour in the dependence of the
supercurrent on the transverse widths is noticed at a larger phase, φ ≈ 2π/3. In our figure 21
we see this behaviour between the critical widths Lcr

t = 14.0492, when the mode (3, 1) starts
to contribute and Lcr

t = 16.0186, when the mode (3, 2) appears. Around φ = 2π/3, the curve
corresponding to Lt = 15 bohr lies slightly higher than the curve for Lt = 16 bohr. This can
be interpreted as being due to a destructive interference between the electronic contributions
to the current at larger phase. This results in a small deviation from the symmetry of the
sin-function dependence of the supercurrent as a function of phase. For an infinite transverse
width, Tanaka and Tsukada show a similar dependence in figure 4 of their paper [8].

The way in which the transverse width influences the maximum of the supercurrent Imax is
shown in figure 22. The monotonic increase of the supercurrent exhibits steps at each critical
width. This is not surprising, since at a critical width new modes start to contribute. At the
onset of this contribution, the kinetic energy of the new modes k2

F − (
ny,maxπ

Lt
)2 − (

nz,maxπ

Lt
)2 is

very small and so is their contribution to the supercurrent. But with the increase of Lt , the
supercurrent reaches a constant regime, until the next Lcr

t .
Now we fix the transverse width at Lt = 13 bohr and we change the layer thicknesses dS

and dN . The results are shown in figure 23. If dS � ξ , in which the coherence length ξ ≈ 4000
bohr, the SN multilayer compares well to an SNS system, for which φmax ≈ 0.8π , as we will
see below in discussing figure 30. At smaller values of dS the phase φmax at which the current
has a maximum shifts gradually towards lower values. Further, if the ratio between dS and dN

is constant, the systems have approximatively the same maximum supercurrent. However, it
should be noticed that all systems have the same �. This picture of constant Imax changes if the
gap function is calculated self-consistently, as will be shown in section 6. With the decrease
of dN with respect to dS, the current increases due to a better coupling between the S layers.
Modifying the value of dN does not have consequences for φmax. This can be noticed if we
compare the curves corresponding to dN = dS = 4000 bohr and dN = dS/2 = 2000 bohr.
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Figure 23. The dependence of the supercurrent I on dN and dS for Lt = 13 bohr. I0 = e�/h̄.

6. Self-consistent calculation of the gap

The formalism described in section 2 can be applied to a self-consistent calculation of the
gap function �. The method, which is extensively described in [5, 7], is based on the self-
consistency condition

�(x) = −kB T V (x)
1

L2
t

∑
ky ,kz>0

∑
n

G12(x, x; ky, kz, iωn). (41)
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Figure 24. Self-consistent gap calculations for systems with transverse width Lt = 30 bohr.

Using this self-consistency condition, we can determine the absolute value of the order
parameter.

The summation in equation (41) is divergent. In order to render the sum convergent, a
cut-off of the summation over the Matsubara frequencies is introduced, as in the following
expression:

�(x) = −kB T V (x)
1

L2
t

∑
ky ,kz>0

ωD∑
|ωn |=πkB T

G12(x, x; ky, kz, iωn), (42)

where ωD is the Debye frequency. We limit the Matsubara frequency to ωD = nmaxπkB T ,
where nmax = [
D/πT ] and 
D = ωD/kB the Debye temperature. As we notice, at large
temperatures, nmax becomes small, while dωn = ωn − ωn−1 is large. This gives rise to big,
unphysical oscillations of the order parameter � with temperature T , close to Tc. We get rid of
these unwanted oscillations by taking an integration, rather than a summation over ωn . Results
for a bar of transverse widths Lt = 30 and 100 are shown in figures 24 and 25 respectively, to
which we will come back later in this section.

In addition to the integration over the Matsubara frequencies, we also investigated another
cut-off method, which avoids the gap oscillations at large temperatures. An alternative way to
render the summation (41) convergent is to impose the cut-off on the momenta k, instead of
on the Matsubara frequencies. For a homogeneous S bar this reads

�(x) = −kB T V (x)

8π

1

L2
t

∫ µ+kB 
D

k2=µ−kB 
D

dkx

∑
ky ,kz

∑
n

G12(kx, ky, kz, iωn). (43)

More explicitly, equation (43) can be written

�(x) = −kB T V (x)

8π

1

L2
t

∫ µ+kB 
D

k2=µ−kB 
D

dkx

∑
ky ,kz

∑
n

�

(iωn)2 − (µ − k2
x − k2

y − k2
z )

2 − �2
. (44)
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Figure 25. Self-consistent gap calculations for systems with transverse width Lt = 100 bohr.

We further perform the summation over the Matsubara frequencies, obtaining

�(x) = − V (x)�

8π

1

L2
t

∫ µ+kB 
D

k2=µ−kB 
D

dkx

∑
ky ,kz

tanh Ek
2kB T

2Ek
, (45)

where E2
k = (µ − k2

x − k2
y − k2

z )
2 + �2. For bulk superconductors, both ways of rendering

the integral convergent lead to the same result. However, in the case of a homogeneous S bar,
we have summation over the transverse momenta ky and kz instead of an integration. This
dramatically affects the results when ky and kz are large, particularly at small Lt . We can
see this in the dependence of the gap � on the transverse width Lt , shown in figure 26. The
calculation is done at T = 0. The dotted curve comes from a calculation with a cut-off on
the Matsubara frequencies. Apparently, the latter cut-off method leads to a much more stable
result than the method in which the momenta are cut off. The solid curve indeed exhibits
unphysical oscillations in the gap. In addition we show a dependence �(T ) in figure 27. This
curve exhibits a greatly reduced superconductivity compared to the upper curve in figure 24
obtained by the other cut-off method. We conclude that cutting off the Matsubara frequencies
leads to much more reliable results. Otadoy et al [5, 7] used this method to calculate the self-
consistent gap for systems such as SNS and SNSNS systems. Here, we extend the application
to SN multilayers. We show results for two transverse widths.

In figure 24 the temperature dependence of the gap is shown for Lt = 30 bohr. The
solid, dotted and dashed curves represent �(T ) for a homogeneous S bar, an SN multilayer
with dS = dN = 10 000 bohr and an SN multilayer with dS = dN = 4000 bohr respectively.
As expected, the self-consistent gap decreases with the periodicity dS + dN of the multilayer.
Indeed, for a smaller dS, the contribution to the averaged gap over the layer comes mostly
from the regions close to the NS interface, where the suppression of the gap is most effective.
Similarly, in figure 25 we show results for systems with Lt = 100 bohr. Again, one clearly
sees the suppression of superconductivity by reducing the transverse width.

In addition to the results derived in section 5, in the present stage we can look to the
temperature dependence of the supercurrent, by making use of the absolute value of the
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Figure 26. Self-consistent gap calculations for homogeneous S bars of different thicknesses Lt , at
T = 0, for two different cut-off methods.
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Figure 27. Self-consistent gap calculations for a homogeneous S bar of Lt = 30 bohr, using
momentum cut-off.

order parameter, determined previously. First we show in figure 28 the phase dependence
of the supercurrent for multilayers with Lt = 30, at different temperatures. For a given layer
thickness, the peaks at different temperatures occur at the same phase. The multilayer with a
smaller periodicity dS + dN has the corresponding maximum at a lower φ, as we discussed in
the previous section. We notice the suppression of the current with the increase of T . For the
multilayer with dS = dN = 10 000 and Lt = 30, we show the current–temperature dependence
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Figure 28. Phase dependence of the supercurrent I , calculated with a self-consistent gap function.
Lt = 30 and I0 = e�s/h̄, with �s = 0.8 × 10−4 the self-consistent gap for the homogeneous bar
at T = 0.
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Figure 29. Self-consistent calculation of the supercurrent as a function of temperature for an SN
multilayer with dS = dN = 10 000 and Lt = 30. I0 = e�s/h̄ and �s = 0.8 × 10−4.

I (T ), in figure 29. The temperature at which the supercurrent becomes zero coincides with
the critical temperature at which the corresponding gap function is zero, see figure 24.

Finally, we compare the phase dependence of the supercurrent for SN multilayers with
corresponding results for the SNS system. In figure 30 we show results at temperature
T = 0.4 K. The gap function in the SNS systems is equal to the homogeneous bar gap,
�T =0.4 K = 7.4 × 10−5 Ryd, and it is larger than the gap inside the S layers of the SN
multilayers, which takes the values �T =0.4 K = 3.7 × 10−5 Ryd for dS = dN = 10 000 and
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Figure 30. Self-consistent calculation of the supercurrent as a function of phase for SN multilayers
with dS = dN = 10 000 and dS = dN = 4000, and corresponding SNS systems with dN = 10 000
and dN = 4000 respectively. Lt = 30, I0 = e�s/h̄ and �s = 0.8 × 10−4.

�T =0.4 K = 1.7 × 10−5 Ryd for dS = dN = 4000 respectively, as one can see in figure 24.
This is why the supercurrent in the SNS systems is larger than in the SN multilayers. However,
with the increase of the N layer thickness, the supercurrent in the SNS system decreases, since
a thicker N layer corresponds to a weaker coupling between the two half-infinite S layers. In
contrast, for the SN multilayer results shown, the S layer thickness increases as well when
the N layer thickness is increased, and the supercurrent increases. In consistency with the
discussion of figure 23, the phase at which the supercurrent has a maximum, φmax, does not
depend on the N layer thickness, and it shifts to the right with increasing dS .

7. Interface potentials

Stimulated by recent work on the influence of interface barriers in SNS systems [14], we
studied this in more detail and for SN multilayers as well. Interface barriers can come out in
practice as an effect of localized disorder at the interface or as a typical oxide layer in a point
contact.

A simple model of a δ-function potential at the interfaces introduced by Blonder et al [13]
can be implemented in our formalism easily. The corresponding Hamiltonian for interfaces at
positions x j reads

Hx ≡ − d2

dx2
− k2

F x +
∑

j

W jδ(x − x j), (46)

where W j is the strength of the barrier and can be estimated using the transmission coefficient
of the barrier

T ≡ 1

1 + mW 2/h̄2 E
. (47)
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Figure 31. LDOS for an SNS system at different barrier strengths W . dN = 10 000; Lt = 13.

In the presence of a δ-function barrier, the wavefunction is still given by equation (4), but the
boundary conditions for the Green function now read∑

ν

Sν j Gν jν′ j(x j , x ′) = 0, (48)

where

Sν j =



ν 0 0 0
0 ν 0 0

− 1
2 W j 0 ν 0
0 − 1

2 W j 0 ν


 . (49)

We choose W j = W the same for each SN interface.
Before applying this to SN structures, we first look at the bound states of an SNS system

at different choices of the barrier strength W . In figure 31 we show the LDOS of an SNS
system characterized by dN = 10 000 bohr and Lt = 13 bohr. In the absence of the interface
potential, the SNS system LDOS has four bound states for E < �, corresponding to the modes
(1, 1), (1, 2), (2, 1) and (2, 2). Due to the fact that L y = Lz = Lt , the states corresponding to
the (1, 2) and (2, 1) modes are degenerate. Apparently, as we can notice, the presence of the
δ-function potential favours the appearance of new bound states, due to the scattering with the
interface potential. This implies that in the presence of a scattering potential even in the AA
the bound states split up.

In the case of the multilayer, for which results are shown in figure 32, the deviation from
the zero-potential case is even more pronounced, as the quasi-periodicity of the dispersion
relations (36) is perturbed by the interface barrier. As for the SNS system, new bound states
appear and complicate the picture seen in figure 14, which describes the same multilayer, but
in the absence of an interface barrier.

In the limit of a large barrier strength W (W > 1 Ryd bohr), the S layers decouple, so that
the density of states for a multilayer becomes similar to the one of an SNS system. This can be
seen in figure 33, in which we show the LDOS for an SN multilayer with dS = dN = 10 000 and
Lt = 13, and for an SNS system with dN = 10 000. The barrier strength is W = 10 Ryd bohr.
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Figure 32. LDOS for an SN multilayer at different barrier strengths W . dS = dN = 10 000;
Lt = 13.

Compared to the strength of an S layer, which is �dS = 1 Ryd bohr, this interface barrier is ten
times larger. At such a large strength of the barrier, in the N layer there are just bound states. To
make this clearer, in figure 34 we show the contribution from each transverse mode to the LDOS
of an SNS system, for energies up to ten times the gap. The peaks corresponding to the same
mode (ny, nz) have the same height and obey the dispersion relation for a three-dimensional
box,

E + µ = k2
x + k2

y + k2
z =

(
(2nx + 1)π

dN

)2

+

(
nyπ

Lt

)2

+

(
nzπ

Lt

)2

, (50)

with 2nx + 1 � kFx dN
π

and kF x =
√

µ − ( nyπ

Lt

)2 − ( nzπ

Lt

)2
. Thus, for the (1, 1) mode, the first

peak has nx = 985 and is situated at the energy E = 2�, while the second peak has nx = 986
and occurs at E = 9.7�. Similarly, using equation (50) for the modes (1, 2) and (2, 1), we
obtain peaks for nx = 726 at E = 3.6� and for nx = 727 at E = 9.3�. For the mode (2, 2)

we get peaks for nx = 288, 289, 290, 291 and 292, at the energies E = 0.6, 2.9, 5.1, 7.4
and 9.7� respectively.

The fact that the S layers decouple in the limit of large barrier strength also has
consequences on the phase dependence of the LDOS. We first show in figure 35 the LDOS of
an SN multilayer without interface barrier for φ = 0 and π . In this figure the solid curves of
figures 14 and 15 are shown in one picture. Clearly, the features of the LDOS, already discussed
in section 3, are different for the two values of the phase φ. However, in the presence of an
interface barrier, the picture changes. In figures 36 and 37 we show the LDOS for W = 1
and 10 respectively. When W = 1, the bound states occur at almost the same energies for
both phases, and for W = 10 the LDOS almost coincide, as a result of a complete decoupling
of the successive S layers. This leads to a total suppression of the supercurrent at large values
of W .

The calculated supercurrent I for an SN multilayer at different barrier strengths W is
shown in figure 38. Clearly, an interface barrier diminishes the supercurrent. The stronger the
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Figure 33. LDOS in the N layer of an SN multilayer and of an SNS system, at W = 10 Ryd bohr.
dS = dN = 10 000; Lt = 13.
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Figure 34. The contributions of the transverse modes to the LDOS of an SNS system with W = 10.
dN = 10 000; Lt = 13.

barrier, the smaller is the transmission probability through the interface. For values of W larger
than 2 Ryd bohr the supercurrent is completely suppressed. A similar result was obtained in
the recent study mentioned above, of the Josephson current in the much simpler SNS system
having several insulating barriers [14].
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Figure 35. LDOS in the N layer of an SN multilayer at φ = 0 and π , and without interface barrier.
dS = dN = 10 000; Lt = 13.
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Figure 36. LDOS in the N layer of an SN multilayer at φ = 0 and π , and with W = 1.
dS = dN = 10 000; Lt = 13.

8. Conclusions

In this paper we discussed SN multilayer structures. In particular we show results for periodic
infinite multilayers, represented by a Kronig–Penney superlattice model. By applying a Green
function formalism, we focused first on the Andreev bound states and we studied the limitations
of the AA in relation to the finite transverse size of the systems.
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Figure 37. LDOS in the N layer of an SN multilayer at φ = 0 and π , and with W = 10.
dS = dN = 10 000; Lt = 13.
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Figure 38. Supercurrent for an SN multilayer at different potentials. dN = 10 000, Lt = 13 and
I0 = e�/h̄.

Further, we calculated the supercurrent through such a periodic SN multilayer. We
completed this study using a self-consistently calculated gap. Finally, including a δ-function
potential at the interface, we derived results which account for possible barrier scattering at
the interfaces.

The results presented in this paper are meant to increase understanding of the physics
which is behind SN multilayer structures. For our purpose it is more appropriate to investigate
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systems of very small transverse size because in such systems the effects of the breakdown
of the AA come out most clearly. However, at the moment there are no experimental data
to which we can compare. For larger systems, more accessible to experiments, the physics
remains the same, but their complexity could obscure some of the fundamental aspects we are
looking at.

Applications to intrinsic Josephson junctions [15] made from high-Tc S materials would
require an extension of the present theory to the case of d-wave symmetry of the order parameter.

Appendix. The matrices Â, B̂, and Ĉ

In this appendix we show the structure of equations (28)–(30) more explicitly. The matrices Â
and Ĉ are highly singular and, due to this, the solutions of equations (28) and (29) are sparse
matrices, which can be written

X̂− =




0̂ 0̂ x̂13− 0̂
0̂ 0̂ x̂23− 0̂

0̂ 0̂ x̂33− 0̂

0̂ 0̂ x̂43− 0̂


 =




0̂ 0̂

(
X15− X16−
X25− X26−

)
0̂

0̂ 0̂

(
X35− X36−
X45− X46−

)
0̂

0̂ 0̂

(
X55− X56−
X65− X66−

)
0̂

0̂ 0̂

(
X75− X76−
X85− X86−

)
0̂




(A.1)

and

X̂+ =




0̂ 0̂ 0̂ x̂14
+

0̂ 0̂ 0̂ x̂24
+

0̂ 0̂ 0̂ x̂34
+

0̂ 0̂ 0̂ x̂44
+


 =




0̂ 0̂ 0̂

(
X17

+ X18
+

X27
+ X28

+

)

0̂ 0̂ 0̂

(
X37

+ X38
+

X47
+ X48

+

)

0̂ 0̂ 0̂

(
X57

+ X58
+

X67
+ X68

+

)

0̂ 0̂ 0̂

(
X77

+ X78
+

X87
+ X88

+

)




. (A.2)

Substituting these matrices into equations (28) and (29), we can reduce the set to solving
two quadratic matrix equations for the 2 × 2 complex matrices x̂33− and x̂44

+ .

x̂33
− =

(
X55− X56−
X65− X66−

)
(A.3)

and

x̂44
+ =

(
X77

+ X78
+

X87
+ X88

+

)
. (A.4)

This appears to be equivalent to solving a system of eight simultaneous equations with real
coefficients. Mathematically, one can never predict the number of solutions. We solve this
system numerically, by applying Newton’s method, which requires an initial guess of the
solution. Since we know that the solution is close to the AA, we give as an initial guess a
diagonal matrix, namely the unitary matrix. This leads us to the physical solutions for X̂−
and X̂+ which, by using equation (30), allows the calculation of the T̂0 matrix, which we
need for the T̂ j j ′ matrix (27) and the Green function (31). Finally, we are able to make use
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of the expressions (2) and (3) and calculate the LDOS and the supercurrent of a periodic SN
multilayer.

In the AA some matrix elements are zero and further simplifications can be made. By
neglecting the ordinary reflections of the quasiparticles at the SN interfaces, some of the
t̂-matrices are equal to zero. This results in a simpler form for the matrices Â and Ĉ

Â =



0 0 0 0
0 0 0 â24

0 0 0 0
0 0 0 0


 , (A.5)

where

â24 =
(

t̂+++−
−+ d+

+ je
−ik+

+ j a+ t̂+−+−
−+ d−

+ j e
ik−

+ j a+

t̂−++−
−+ d+

+ j e
−ik+

+ j a+ t̂−−+−
−+ d−

+ j e
ik−

+ j a+

)
=

(
t̂+++−
−+ d+

+ j e
−ik+

+ j a+ 0

0 t̂−−+−
−+ d−

+ j e
ik−

+ j a+

)
(A.6)

and

Ĉ =



0 0 ĉ13 0
0 0 0 0
0 0 0 0
0 0 0 0


 , (A.7)

and

ĉ13 =
(

t̂++−+
+− d+

− j e
−ik+

− j a− t̂+−−+
+− d−

− j e
ik−

− j a−

t̂−+−+
+− d+

− j e
ik+

− j a− t̂−−−+
+− d−

− j e
−ik−

− j a−

)
=

(
t̂++−+
+− d+

− j e
−ik+

− j a− 0

0 t̂−−−+
+− d−

− j e
−ik−

− j a−

)
.

(A.8)

In consequence, the solutions x̂33− and x̂44− then have a diagonal form.

x̂33
− =

(
X55− 0
0 X66−

)
(A.9)

and

x̂44
+ =

(
X77

+ 0
0 X88

+

)
. (A.10)

This allows us to decouple the equations for X55− and X66− into two quadratic equations
which can be solved directly. The same holds for x̂44

+ . Combining the two possible solutions
for X55− and X66− with the two possible solutions for X77

+ and X88
+ , one obtains four mathematical

solutions for X̂− and X̂+. Two of the solutions are complementary and lead to a zero value
for the LDOS. Using the other two solutions, one gets either the positive physical value for
the LDOS, or the same value with the opposite sign. We use this criterion to distinguish the
physical solution from the four mathematically possible solutions.
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